

3i Spinning disk

User manual

Medisiina Imaging Centre

Medisiina C2

CONTACT:

microscopy@bioscience.fi

029 450 4536 (Markus Peurla) 050 369 7532 (CIC mobile) +358 (0)20 7032561(CIC office) Medisiina C 2nd floor, room C240

Contents

1.	Information1
2.	Before Imaging2
3.	Working with immersion objectives
4.	System start-up4
5.	System shut down5
6.	Starting the software
7.	Finding sample using oculars7
8.	Sample visualisation using confocal
9.	Imaging Acquisition using Capture window9
10.	Capturing a Z stack
1(0.1. Capturing one channel at a time for whole Z stack
11.	Live cell imaging12
12.	Troubleshoot
1:	2.1. No excitation light to a sample in widefield mode (Eyepieces)
1:	2.2. Cannot get sample into focus13
1:	2.3. Camera do not work or no driver found 13

1. Information

The Cell Imaging and Cytometry Core is responsible for maintenance of this microscope.

Each user must follow the CIC user policy.

More information: https://bioscience.fi/services/cell-imaging

- Only authorized users may use the CIC instruments.
- Users must report any malfunction or problem to the CIC personnel.
- The user is responsible for removing their data from the hard drive and should do so immediately.
- Files older than 30 days are automatically wiped from the system without prior notice.

2. Before Imaging

Check your sample with an ordinary fluorescence microscope

It is a good practice to check the quality of your sample before making use of a more expensive instrument.

Clean your slides

Clean the remaining salt and mounting medium off the coverslip. Dirty coverslip compromises the image quality. You can use ethanol to aid the cleaning. Do not use the microscope lens tissue. Clean your slides beforehand in your own lab, as it is impractical to use microscopy time for cleaning.

Check the environment

Switch on the lights and check if the microscope environment is tidy. If there are oil spills or other issues, please inform CIC personnel. (microscopy@bioscience.fi)

Start the heating earlier if possible

When doing live cell imaging, it is good to switch on the heating at least two hours in advance. If someone is using the instrument, ask whether it is possible to switch it on. If no one is using the instrument, start the instrument and switch on the heating.

Cancellation

Cancellation must be done 12 hours before the reservation starts. However, if you suddenly cannot use your time, contact us by email or come to the office. Late cancellations are only accepted under exceptional circumstances.

If you are the last user of the day and cannot come, you are responsible for the instrument shutdown.

Unsure?

If you feel that you need support, please contact CIC personnel.

3. Working with immersion objectives

The immersion medium should match the objective.

The 100x and 63x oil objectives need oil with a refraction index of 1.518.

The image will be suboptimal when incorrect oil is applied. Mixing immersion oils is prohibited.

A small drop of oil is enough, adding too much can make a mess and damage the instrument.

Start imaging with the objective in the lowest position. Then, focus the objective upwards until the just oil touches the coverslip.

Next, focus the sample visually through the eyepieces.

After imaging, wipe the oil off from the objective softly with a dry lens tissue. Then, finish the cleaning by wiping softly with a new lens tissue moistened with isopropanol.

Only lens tissue may touch the objective lens.

Lower the objective when changing the sample to view with an immersion objective

- Press load position on the touchpad to move the objective down.
- Remove the sample and add oil if needed
- Place the sample and raise the objective back into contact with the sample.
- If you are changing from an oil objective in between samples, wipe the objective clean with a dry lens tissue. Otherwise, oil might spill into the microscope.

4. System start-up

Follow the order:

First switch on top row from right to left.

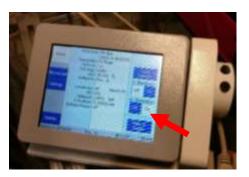
First switch on bottom row from right to left.

Start the computer.

Turn the laser lock key to ON:

5. System shut down

- Move objective to the load position and clean carefully.
- Close the SlideBook software, take your data and shut down the Windows/PC.
- Turn the laser lock key to OFF.
- Switch off from left to right: first bottom row, then top row.


6. Starting the software

Click the Slidebook icon on the Windows desktop

- Open a new slide (and save it to your folder) from icons
- Open Focus and Capture windows

7. Finding sample using oculars

NOTE: the first user must open the RL shutter on the touchpad to allow fluorescence through the eyepieces!

ocus Window	,
4 Stope 2 m Store Bonani 6D Lanethin Str.Nr 10x.Ar Entenani Selection 100% Centres 100% Centres 20x10 20x.Ar 100% Centres 100% Centres 44bx 100 50x 00 Nagrification 100x A Changer Changer 10x	Lang Set. 0.01Set. Condenser Aperture 80.31. Posten File 1
Careta (Pres 851	
Zum + - United Colling Statement (P Surface Studies If P Surface Surface Inv Surface Inv
	R Destates Linear

4 Scope [2] 10 Camera	Stream 6D LaverStream	Fonal	>
Objectives 10x Av 5x Av 20x Av 20x 10 20x Av 40x LD 5x or A Ψ	Ensuen Selector C 100: Canas C 100: R G 100: R Magnification Change: Change:	Lans: 0.01. Condense Apentue Position (Pos 1	- en 4 ±
Canena (Preve IIS) Expresser 100 ms - Zoon +		P Annere Date	ger fat 💽
Filter Set. Eyes	BILED MICH	3-	Otye Ausr
BF 405 LED	~ 2	-	Open Bright Open At

- In the **Focus window**, the objectives are displayed in the upper left corner:
 - 5x/0.16 Air
 - 10x/0.45 Air
 - 20x LD/0.4 Air
 - 20x/0.8 Air
 - 40x LD/0.6 Air
 - o 63x/1.4 Oil

- Emission selection (1) determines the direction the fluorescence is sent:
 - \circ 100% camera
 - \circ 100% eyes
- From Filter set (2): select Eyes and select the channel you want to visualize e.g. 405 LED.
- For fluorescence, you must select **Open Fluor (3)** to open the shutter.
- For transmitted light, select the **BF filter** and **Open Bright**. Transmitted light intensity is adjusted by using the Lamp slider **(4)**.

Objectives 5x Ar 20x LD	Z] XY] Camera 10x Ar 20x Ar	Stream 6D LaserStream Emission Selection © 100% Camera © 100% R © 100% Eyes	Focus Lamp 0.0% Condenser	<u>Set</u>
40x LD	53x OI	Magnification Changer: C Camma C Video	Poston Pos 1	•
Exposure:	100 me -			Bin: 1x1
Exposure:	100 me =			Bin: 1x1 Live Snag © Open Rug © Open Big © Close At

8. Sample visualisation using confocal

- Confocal mode can be used by selecting **Filter set (1)** and choosing **Confocal**.
- Select the filter set such as **c488**.
- Note: A quad band filter is available for fast imaging (c405q/ c488q/ c560q/ c640q) However, these are not recommended for most imaging as channel cross talk is highly likely.
- Pressing the **live/stop (2)** button will open/close the **Open Alt (3)** laser shutter and start imaging. Camera exposure time can be adjusted with the slider.

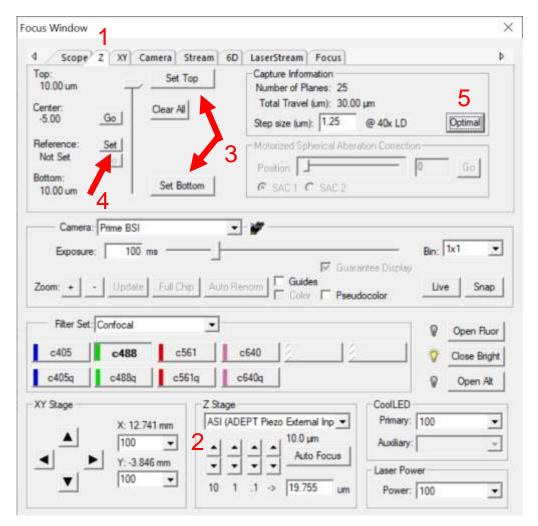
Note: Image optimization for confocal capture is better to do in the Capture tab.

9. Imaging Acquisition using Capture window

- The top part of the window allows selection of **Bin Factor (1)** to increase sensitivity by combining local pixels: Binning setting available are: 1x1, 2x2, 3x3 and 4x4.
- Chip size width and height is 1840x1840 pixels. Press full chip (2) to using the whole camera chip when imaging.

ter Set: Confocal	• Exposure	Adjust Exposure	Laser Power:	Current	
(¥)c405 (100 ms)	Manual 100	Dree	ND:	Current	-
(✓):433 (100 ms) (✓):c561 (100 ms)	Test 2		Aux ND:	NA:	3
(€c640 (100 ms)	Live	Find Best	TIRF	NĂ.	
2	Correct: T Dat	Field T Rat Field	intensity:	NA:	
c405q			Offset	NA	1 1 1
_]c488q			Gain:	Current	-
⊡c561q ⊡c540q	~	•	Average	1	3
Move Up Move Down Dplics Objective: 40x LD	0 - Image Information (Option Name:		695	Start	8

- To set channels for capture select Filter set **Confocal (1)** and check the channels in the box e.g. c405 and c488.
- Exposure times (milliseconds) are adjustable by typing into the box.
- Below are **Test** and **Live** buttons (2). Test takes one single frame and live will continually update the image.


Note: The test setting allows you to optimise exposure time with greatly reduced risk of bleaching the sample.

• The test and live button will only capture the channel highlighted in blue.

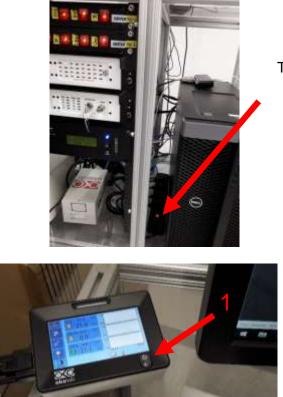
Note: Laser Power, and **Averaging** settings are adjusted on the right side of the tab. The "Current" setting for the Laser Power is 100%. In addition, <u>if you define the laser power</u> for one channel, all other selected channels must be manually defined.

• Once all your channels are optimised, name your file and press start (3)

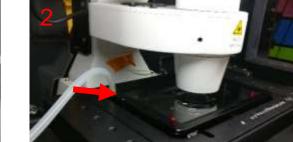
10. Capturing a Z stack

- A range must be set to capture a Z stack. In the Focus window, select the Z tab (1) from the top.
- Using the **Z Stage controls (2)**, set the **top and bottom limits (3)** of your stack. The Z controls use the ASI Piezo stage to move through your sample.
- Alternatively, you can also set a **reference position with the Set button (4)** and it can be used to centre a Z stack around it. This is useful for multi position imaging.
- **Optimal (5)** z step size can be selected and is based on Nyquist sampling for the objective used.

Capture Settings Default Current: Default (mod)	Extent, Offset and Binning (pixels)	48 V Height: 2048 V Update Y Offset: 0 Full Chip
Advanced Capture Type 3D Subconsc Timelapse Simultaneous Stereology	Timelapse Capture # of Time Points: 1 1E stimated Ducation: 1 = = Interval: 1000ms Display: T Renormalize to 1 = 0	Available: 224.49 GB Required: 600.00 M 3D Capture Use current C position Range (um): 20 C Use interence # Planes: 75 Step Size (um): 0.27 C Use top and bottom positions Offset (um): 20


- In the Capture window activate **3D (1)**
- Select Use top and bottom positions (2) if you set a top and bottom limit.
- If you set a reference position slices can be set to range around it.
- Range, # planes and Z step size are adjust on the right side of under **3D Capture**.

10.1. Capturing one channel at a time for whole Z stack


- By default, the system will capture each channel per slice, then move to the next slice.
- You can capture one channel for the whole stack then repeat for the following channels. This is faster but is less accurate for checking colocalization for example.
- To capture one channel for the whole stack select **Advanced** and go to the **4D tab**.
- Under Multi-channel Z series select capture one channel at a time for all z positions.

Current: Default (mod) Advanced Capture Type of Timelapse Capture # of Time Points: 1 Simultaneous Director 1 Director 1 Simultaneous Director 1 Director 1 Simultaneous	
---	--

11. Live cell imaging

Turn on the switch next to the computer.

- Turn on the Oko touch pad (1) and set the desired temperature and CO2 concentration. If possible, set the heating on at least 2 hours before the imaging begins.
- Insert the live cell holder and connect the air tube (2). Be extremely careful when lowering the condenser so you do not smash into the glass lid of live cell chamber.

• Before you bring your sample, open the main and output valves of the CO2 bottle (3).

12. Troubleshoot

12.1. No excitation light to a sample in widefield mode (Eyepieces)

Check that light path is correct and open the RL-shutter of the microscope manually from the touch pad (see page 7).

12.2. Cannot get sample into focus

- Check that your sample and a sample holder are properly installed.
- Use focus knob of the microscope and focus to a sample, and then continue focusing from software (with piezo focus steps).

12.3. Camera does not work or no driver found

Close the Slidebook software, wait 2 min, then open the software again. If the camera is still unavailable, restart the whole system and ensure that the cameras are on.