Sketching T cell atlases in the single-cell era: challenges and recommendations
Immunol Cell Biol. 2025 Jun 29. doi: 10.1111/imcb.70040. Online ahead of print.
Published on June 29, 2025
ABSTRACT
Recent advances in single-cell technologies have enabled the creation of comprehensive cell atlases, reference maps of various cell types within organisms. Here we specifically focus on T cell atlases, which offer a detailed catalog of the adaptive immune system at single-cell resolution. As such, they capture cellular diversity, functional states, and spatial dynamics across tissues, developmental stages, and disease conditions. Given the central role of T cells in orchestrating immune responses, their dysregulation underpins autoimmune disorders, cancer progression and failed immunotherapies. Therefore, a unified T cell atlas is critical for decoding such disease mechanisms, identifying therapeutic targets, and advancing personalized treatments. In this article, we explore the latest advances in T cell atlases, describing breakthroughs in multi-omics technologies, spatial profiling and computational frameworks that resolve transcriptional, epigenetic and proteomic heterogeneity. We also address persistent challenges and highlight strategies to address these gaps. Finally, we discuss emerging frontiers set to reshape our understanding of T cell dynamics in both health and diseases. Together, these insights underscore the transformative potential of T cell atlases in reconstructing precision immunology and accelerating therapeutic innovation.
PMID:40582988 | DOI:10.1111/imcb.70040
Latest Publications
- PhotoFiTT: a quantitative framework for assessing phototoxicity in live-cell microscopy experiments
- A resource to empirically establish drug exposure records directly from untargeted metabolomics data
- Microbiome-derived bile acid signatures in early life and their association with islet autoimmunity
- Mitochondria-Targeted Nanomotor: H2S-Driven Cascade Therapy for Hepatocellular Carcinoma
- Regulation of cell dynamics by rapid integrin transport through the biosynthetic pathway