JNK Protein Triggers Nerve Cells to Withdraw Their Synapses when Stressed
Blocking activation of the JNK protein in synapses stops synapses from retracting. Temporal colour coding shows that when the JNK protein is inhibited in synapses using a light beam, a structural protein called “actin” freezes in time. Changing the cells cytoskeleton is part of an array of molecular events that JNK triggers to destabilize synapses.
Synapses are tiny cell protrusions where electrochemical impulses pass between nerves. Prolonged stress in the brain causes synapse withdrawal and maladaptive changes to circuits that are linked to the development of major depressive disorder.
Postdoctoral Researcher Patrik Hollós and colleagues used a light-activated optogenetic tool to switch off the activity of a protein called JNK specifically in synapses.
– Using a light beam to inhibit the JNK protein prevented synapses from shrinking in response to stress. Specifically the internalisation of a receptor called “AMPAR”, an early event in synapse disassembly, was blocked, explains Hollós.
JNK Is a Stress Sensor in Synapses and May Elicit the Effects of Ketamine
Researchers also found that the novel, fast-acting anti-depressant ketamine inhibited the JNK protein while preventing synapse retraction.
– These results show that the JNK protein is a stress sensor in synapses. When activated, it triggers the disassembly of synapse machinery followed by rapid synapse regression. Conversely, inhibiting the JNK protein makes synapses able to withstand chronic endocrine stress. This may be relevant for conditions where hormonal stress leads to synapse elimination but also to control synapse number under normal homeostatic conditions, says team leader Eleanor Coffey.
These findings help us to understand how stress dismantles synapses, and provides clues for novel targeted therapies.
The study was published as a research highlight in the open access journal of the Society for Neuroscience, eNeuro.
Research was conducted at Turku Bioscience Centre a joint research facility of the University of Turku and Åbo Akademi University.
For more information contact Research Director Eleanor Coffey, Turku Bioscience, eleanor.coffey@bioscience.fi
Recent Posts
-
Newly discovered gut microbial molecules in infancy may influence the risk of type 1 diabetes
An international research team has uncovered compelling evidence that gut-microbe-derived molecules may play an important Read moreJanuary 20, 2026
-
Turku Bioscience Centre Is Recruiting New Research Leaders
Turku Bioscience Centre is currently inviting applications for two key research positions that will strengthen Read moreJanuary 13, 2026
-
Season’s Greetings & Happy 2026!
Season’s Greetings & Happy 2026! From everyone at Turku Bioscience. Riitta Lahesmaa,Director of Turku Bioscience Read moreDecember 23, 2025
-
The Sigrid Jusélius senior researcher posts grant to Carlos Rogerio Figueiredo
The Sigrid Jusélius Foundation has awarded a four-year senior researcher grant of €700,000 to our Read moreDecember 15, 2025
-
Guillaume Jacquemet awarded the 2025 Chancellor’s Prize
Guillaume Jacquemet, a Group Leader at our centre, has been awarded the Chancellor’s Prize for Read moreDecember 15, 2025
-
New Funding for our Centre’s Researchers
Warm congratulations to all for their funding! Cancer Foundation Finland Project grants Travel grants The Read moreDecember 12, 2025