Chondroitin Sulfate-Coated Heteroduplex-Molecular Spherical Nucleic Acids
Chembiochem. 2025 Mar 15;26(6):e202400908. doi: 10.1002/cbic.202400908. Epub 2024 Nov 28.
Published on November 15, 2024
ABSTRACT
Molecular Spherical Nucleic Acids (MSNAs) are atomically uniform dendritic nanostructures and potential delivery vehicles for oligonucleotides. The radial formulation combined with covalent conjugation may hide the oligonucleotide content and simultaneously enhance the role of appropriate conjugate groups on the outer sphere. The conjugate halo may be modulated to affect the delivery properties of the MSNAs. In the present study, [60]fullerene-based molecular spherical nucleic acids, consisting of a 2′-deoxyribonucleotide and a ribonucleotide sequence, were used as hybridization-mediated carriers (“DNA and RNA-carriers”) for an antisense oligonucleotide, suppressing Tau protein, (i. e. Tau-ASO) and its conjugates with chondroitin sulfate tetrasaccharides (CS) with different sulfation patterns. The impact of the MSNA carriers, CS-moieties on the conjugates and the CS-decorations on the MSNAs on cellular uptake and – activity (Tau-suppression) of the Tau-ASO was studied with hippocampal neurons in vitro. The formation and stability of these heteroduplex ASO-MSNAs were evaluated by UV melting profile analysis, polyacrylamide gel electrophoresis (PAGE), dynamic light scattering (DLS) and size exclusion chromatography equipped with a multi angle light scattering detector (SEC-MALS). The cellular uptake and – activity were studied by confocal microscopy and Western blot analysis, respectively.
PMID:39544138 | PMC:PMC11907394 | DOI:10.1002/cbic.202400908
Latest Publications
- Author response to “Commentary on detoxification of deoxynivalenol by pathogen-inducible tau-class glutathione transferases from wheat” by Dr. Latika Shendre
- Editorial: Epigenetic regulation of T cell function in type 1 diabetes
- Prenatal exposure to persistent organic pollutants modulates the metabolism and gut microbiota of the offspring
- Preventing Proteomics Data Tombs Through Collective Responsibility and Community Engagement
- Cell viscosity influences haematogenous dissemination and metastatic extravasation of tumour cells