HSF2 drives breast cancer progression by acting as a stage-specific switch between proliferation and invasion
Sci Adv. 2025 Sep 5;11(36):eady1289. doi: 10.1126/sciadv.ady1289. Epub 2025 Sep 3.
Published on September 3, 2025
ABSTRACT
Breast cancer is hallmarked by phenotypic transitions enabling abnormal cell proliferation and invasion. The stress-protective transcription factor heat shock factor 2 (HSF2) is associated with cancer, but its function in breast carcinogenesis remains poorly understood. Analysis of human breast tumor samples and mouse in vivo xenografts uncovered that HSF2 expression and activity undergo dynamic changes as a function of tumor progression. HSF2 expression, nuclear localization, and coexpression with the proliferation marker Ki67 are increased in ductal carcinoma in situ (DCIS), suggesting that HSF2 designates hyperplastic cells underlying tumor expansion. In mouse xenografts, HSF2 localization switches from nuclear to cytoplasmic upon DCIS-to-invasive transition. Using cell-based models, we identify canonical transforming growth factor-β (TGF-β) signaling as the molecular mechanism regulating HSF2. TGF-β-mediated down-regulation of HSF2 allowed acquisition of an invasive cell phenotype, which was counteracted by ectopic HSF2. Together, we propose that HSF2 acts as a stage-specific switch between proliferation and invasion in breast cancer.
PMID:40901953 | DOI:10.1126/sciadv.ady1289
Latest Publications
- Characterization of Visceral Adipose Tissue Proteome Reveals Metabolic Changes and Inflammatory Signatures in Severe Obesity
- Prenatal exposure to perfluoroalkyl substances predicts multimodal brain structural and functional outcomes in children aged 5 years: a birth cohort study
- LimROTS: A Hybrid Method Integrating Empirical Bayes and Reproducibility-Optimized Statistics for Robust Differential Expression Analysis
- MicroRNA gene dynamics in immune cell subpopulations during aging and atherosclerosis disease development at single-cell resolution
- Functional characterization and directed evolution of Cicer arietinum glutathione transferases for enhanced hydroperoxidase activity and ligandin function