Publications
Nuclear talin-1 provides a bridge between cell adhesion and gene expression
iScience. 2025 Jan 4;28(2):111745. doi: 10.1016/j.isci.2025.111745. eCollection 2025 Feb 21.
Talin-1 (TLN1) is best known to activate integrin receptors and transmit mechanical stimuli to the actin cytoskeleton at focal adhesions. However, the localization of TLN1 is not restricted to focal adhesions. By utilizing both subcellular fractionations and confocal microscopy analyses, we show that TLN1 localizes to the nucleus in several human cell lines, where it is tightly associated with the chromatin. Importantly, small interfering RNA (siRNA)-mediated depletion of endogenous TLN1...
Read MoreLiquid and gas-chromatography-mass spectrometry methods for exposome analysis
J Chromatogr A. 2025 Mar 15;1744:465728. doi: 10.1016/j.chroma.2025.465728. Epub 2025 Jan 25.
Mass spectrometry-based methods have become fundamental to exposome research, providing the capability to explore a broad spectrum of chemical exposures. Liquid and gas chromatography coupled with low/high-resolution mass spectrometry (MS) are among the most frequently employed platforms due to their sensitivity and accuracy. However, these approaches present challenges, such as the inherent complexity of MS data and the expertise of biologists, chemists, clinicians, and data analysts to...
Read MoreMetaproteomics Beyond Databases: Addressing the Challenges and Potentials of De Novo Sequencing
Proteomics. 2025 Jan 31:e202400321. doi: 10.1002/pmic.202400321. Online ahead of print.
Metaproteomics enables the large-scale characterization of microbial community proteins, offering crucial insights into their taxonomic composition, functional activities, and interactions within their environments. By directly analyzing proteins, metaproteomics offers insights into community phenotypes and the roles individual members play in diverse ecosystems. Although database-dependent search engines are commonly used for peptide identification, they rely on pre-existing protein databases,...
Read MoreAdaptive sequence alignment for metagenomic data analysis
Comput Biol Med. 2025 Mar;186:109743. doi: 10.1016/j.compbiomed.2025.109743. Epub 2025 Jan 26.
With advances in sequencing technologies, the use of high-throughput sequencing to characterize microbial communities is becoming increasingly feasible. However, metagenomic assembly poses computational challenges in reconstructing genes and organisms from complex samples. To address this issue, we introduce a new concept called Adaptive Sequence Alignment (ASA) for analyzing metagenomic DNA sequence data. By iteratively adapting a set of partial alignments of reference sequences to match the...
Read MoreDual physiological responsive structural color hydrogel particles for wound repair
Bioact Mater. 2025 Jan 7;46:494-502. doi: 10.1016/j.bioactmat.2025.01.002. eCollection 2025 Apr.
Hydrogel-based patches have demonstrated their values in diabetic wounds repair, particularly those intelligent dressings with continuous repair promoting and monitoring capabilities. Here, we propose a type of dual physiological responsive structural color particles for wound repair. The particles are composed of a hyaluronic acid methacryloyl (HAMA)-sodium alginate (Alg) inverse opal scaffold, filled with oxidized dextran (ODex)/quaternized chitosan (QCS) hydrogel. The photo-polymerized HAMA...
Read MoreMechanically regulated microcarriers with stem cell loading for skin photoaging therapy
Bioact Mater. 2025 Jan 3;46:448-456. doi: 10.1016/j.bioactmat.2024.12.024. eCollection 2025 Apr.
Long-term exposure to ultraviolet radiation compromises skin structural integrity and results in disruption of normal physiological functions. Stem cells have gained attention in anti-photoaging, while controlling the tissue mechanical microenvironment of cell delivery sites is crucial for regulating cell fate and achieving optimal therapeutic performances. Here, we introduce a mechanically regulated human recombinant collagen (RHC) microcarrier generated through microfluidics, which is capable...
Read More