Researchers Develop a Simplified Method to Modify Disease Signaling with Light
Cellular optogenetics is a technique that allows researchers to use light to precisely control cell signaling and function in space and time enabling the investigation of mechanisms involved in disease processes. A research team at the Turku Bioscience Centre of the University of Turku have developed a novel way to make cellular optogenetic tools much easier to monitor and apply, and showed how they can be used to investigate the cellular side effects of medicines used to treat cancer.
Most diseases are caused by aberrant cell signaling processes and basic research in cell signaling is needed to identify targets for future therapeutic approaches, especially in cases where no cures or effective treatments are currently available.
Cellular optogenetics uses light to precisely control cell signaling in space and over time, making it an invaluable technique for disease research. However, this potentially revolutionary method has been difficult for many researchers to use as, over long periods of time, the used light can itself have adverse effects on biological systems and the optogenetic tools can inactivate unexpectedly rapidly.
Now, researchers from the University of Turku in Finland, in collaboration with Frankfurt University Hospital in Germany, have developed a novel way to harness the quantum mechanical phenomenon of resonance energy transfer to design optogenetic tools that are more sensitive to light. The new method also informs the user exactly when an optogenetic tool is going to inactivate in cells. If continued activity is required, just the right amount of additional light can then be re-applied to re-activate the tool.
Combining these advances with existing tools and knowledge, the researchers were able to design and build more efficient optogenetic tools to investigate signaling pathways. With the improved tools, they studied two common chemotherapy drugs known to cause side effects on neurons and cause neuropathic pain. The new tools revealed how both activatory and inhibitory pathways contribute to the actions of these drugs on the investigated disease-associated pathway.
– Now we can develop more powerful tools to understand precisely how harmful conditions disrupt signaling in living cells. This information is likely to help us in identifying targets and designing better therapeutic compounds for conditions such as chemotherapy-induced neuropathic pain, says Lili Li, the lead author of the study and Postdoctoral Researcher at the Turku Bioscience Centre.
– There is still considerable potential to further exploit these quantum mechanical phenomena to devise even better quantitative and informative methods in biology and medicine, which could support the future discovery of new therapeutic approaches, adds senior author of the study Michael Courtney.

This research was funded by the Magnus Ehrnrooths Foundation, the National Institutes of Health’s National Cancer Institute (grantome.com/grant/NIH/R01-CA200417), the European Union Erasmus + programme and 7th Framework Programme Initial Training Networks, the Academy of Finland and DAAD mobility programmes and it was supported by facilities of the Turku Screening Unit, a member of the Biocentre Finland Drug Discovery and Chemical Biology Network.
The study was published in the journal Nature Communications.
Research article: Resonance energy transfer sensitises and monitors in situ switching of LOV2-based optogenetic actuators
More information: Senior Research Fellow Michael Courtney, Turku Bioscience Centre, University of Turku, +358 50 464 9827, michael.courtney@bioscience.fi
Recent Posts
- Registration to AI2Med imaging event is now open! Registration for AI2Med Turku 2025 is open! The event is organized by the Turku PET Read moreOctober 21, 2025
- Jonna Alanko receives the Young Investigator Award from the Scandinavian Society for Immunology Jonna Alanko has received the Young Investigator Award of the Scandinavian Society for Immunology. The Read moreOctober 17, 2025
- Professor Riitta Lahesmaa awarded Johnny Ludvigsson Prize for Outstanding Nordic Researcher Professor Riitta Lahesmaa was awarded Johnny Ludvigsson Prize for Outstanding Nordic Researcher. The prize is Read moreOctober 16, 2025
- PFAS levels in mothers’ blood associated with children’s brain structure and function Researchers from the University of Turku and Turku University Hospital, Finland, and Örebro University, Sweden, Read moreOctober 13, 2025
- Professor Laura Elo receives award for outstanding research from the Jenny and Antti Wihuri Foundation The Jenny and Antti Wihuri Foundation awarded Professor of Computational Medicine Laura Elo a €50,000 Read moreOctober 10, 2025
- Recruit your next student at the MSc Thesis Project Expo 2025. Registration is now open! Do you supervise MSc theses in the biosciences? Join the MSc Thesis Project Expo on Read moreOctober 10, 2025