Time, the final frontier
Mol Oncol. 2025 Mar 24. doi: 10.1002/1878-0261.70025. Online ahead of print.
Published on March 24, 2025
ABSTRACT
Cancer’s notorious heterogeneity poses significant challenges, as each tumor comprises a unique ecosystem. While single-cell and spatial transcriptomics advancements have transformed our understanding of spatial diversity within tumors, the temporal dimension remains underexplored. Tumors are dynamic entities that continuously evolve and adapt, and relying solely on static snapshots obscures the intricate interplay between cancer cells and their microenvironment. Here, we advocate for integrating temporal dynamics into cancer research, emphasizing a fundamental shift from traditional endpoint experiments to data-driven, continuous approaches. This integration involves, for instance, the development of advanced live imaging techniques, innovative temporal omics methodologies, and novel computational tools.
PMID:40126098 | DOI:10.1002/1878-0261.70025
Latest Publications
- Spatial single-cell analysis reveals tumor microenvironment signatures predictive of oral cavity cancer outcome
- Embigin is involved in the regulation of early mouse kidney development
- Complete Data Analysis Workflow for Quantitative DIA Mass Spectrometry Using Nextflow
- Bmp9 regulates Notch signaling and the temporal dynamics of angiogenesis via Lunatic Fringe
- High-sensitivity, protein-independent detection of dsDNA sequences