Comparative proteomics analysis of the mouse mini-gut organoid: insights into markers of gluten challenge from celiac disease intestinal biopsies
Front Mol Biosci. 2024 Aug 28;11:1446822. doi: 10.3389/fmolb.2024.1446822. eCollection 2024.
Published on September 12, 2024
ABSTRACT
INTRODUCTION: Organoid models enable three-dimensional representation of cellular systems, providing flexible and accessible research tools, and can highlight key biomolecules. Such models of the intestinal epithelium can provide significant knowledge for the study of celiac disease and provide an additional context for the nature of markers observed from patient biopsy data.
METHODS: Using LC-MS/MS, the proteomes of the crypt and enterocyte-like states of a mouse mini-gut organoid model were measured. The data were further compared with published biopsy data by comparing the changes induced by gluten challenge after a gluten-free diet.
RESULTS AND DISCUSSION: These analyses identified 4,850 protein groups and revealed how 400 putative biomarkers of dietary challenge were differentially expressed in the organoid model. In addition to the extensive changes within the differentiated cells, the data reiterated the disruption of the crypt-villus axis after gluten challenge. The mass spectrometry data are available via ProteomeXchange with the identifier PXD025690.
PMID:39263374 | PMC:PMC11387180 | DOI:10.3389/fmolb.2024.1446822
Latest Publications
- HSF2 drives breast cancer progression by acting as a stage-specific switch between proliferation and invasion
- Breast Milk Proteome: Changes in the Different Stages of Lactation and Impacts of Gestational Diabetes Mellitus and Body Mass Index
- Metabolome informs about the chemical exposome and links to brain health
- Designing Fluorescent Estrogen Mimetic 7-hydroxycoumarin Probe Substrates for Human Sulfotransferase Enzymes
- Cholesterol Ester Storage Disease in Two Field Spaniels With Lysosomal Acid Lipase Deficiency