Hepatic glucose production rises with the histological severity of metabolic dysfunction-associated steatohepatitis
Cell Rep Med. 2024 Nov 19;5(11):101820. doi: 10.1016/j.xcrm.2024.101820.
Published on November 20, 2024
ABSTRACT
Metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) are associated with a high prevalence of type 2 diabetes (T2D). Individuals with MASLD exhibit insulin resistance (IR) and hyperglycemia, but it is unclear whether hepatic glucose production (HGP) is increased with MASLD severity. We evaluated HGP in a cohort of histologically characterized individuals with MASL/MASH using stable isotope infusion (6,6-2H2-glucose, U-2H5-glycerol) and liver-specific genome-scale metabolic models (GEMs). Tracer-measured HGP is increased with liver fibrosis and inflammation, but not steatosis, and is associated with lipolysis and IR. The GEM-derived gluconeogenesis is elevated due to high glucogenic/energy metabolite uptakes (lactate, glycerol, and free fatty acid [FFA]), and the expression of insulin action genes (IRS1, IRS2, and AKT2) is reduced in MASH with fibrosis F2-F4, with/without T2D, suggesting these as putative mechanisms for increased fasting HGP and hyperglycemia. In conclusion, elevated HGP, lipolysis, and IR help to explain the mechanisms for the increased risk of hyperglycemia and T2D in MASH.
PMID:39566466 | PMC:PMC11604487 | DOI:10.1016/j.xcrm.2024.101820
Latest Publications
- Author response to “Commentary on detoxification of deoxynivalenol by pathogen-inducible tau-class glutathione transferases from wheat” by Dr. Latika Shendre
- Editorial: Epigenetic regulation of T cell function in type 1 diabetes
- Prenatal exposure to persistent organic pollutants modulates the metabolism and gut microbiota of the offspring
- Preventing Proteomics Data Tombs Through Collective Responsibility and Community Engagement
- Cell viscosity influences haematogenous dissemination and metastatic extravasation of tumour cells