Liquid and gas-chromatography-mass spectrometry methods for exposome analysis
J Chromatogr A. 2025 Mar 15;1744:465728. doi: 10.1016/j.chroma.2025.465728. Epub 2025 Jan 25.
Published on February 2, 2025
ABSTRACT
Mass spectrometry-based methods have become fundamental to exposome research, providing the capability to explore a broad spectrum of chemical exposures. Liquid and gas chromatography coupled with low/high-resolution mass spectrometry (MS) are among the most frequently employed platforms due to their sensitivity and accuracy. However, these approaches present challenges, such as the inherent complexity of MS data and the expertise of biologists, chemists, clinicians, and data analysts to integrate and interpret MS data with other datasets effectively. The “omics” era advances rapidly, driven by developments of AI-based algorithms and an increase in accessible data; nevertheless, further efforts are necessary to ensure that exposomics outputs are comparable and reproducible, thus enhancing research findings. This review outlines the principles of MS-based methods for the exposome analytical pipeline, from sample collection to data analysis. We summarize and review both standard and cutting-edge strategies in exposome research, covering sample preparation, focusing on MS-based platforms, data acquisition strategies, and data annotation. The ultimate goal of this review is to highlight applications that enable the simultaneous analysis of endogenous metabolites and xenobiotics, which can help enhance our understanding of the impact of human exposure on health and disease and support personalized healthcare.
PMID:39893915 | DOI:10.1016/j.chroma.2025.465728
Latest Publications
- Spatial single-cell analysis reveals tumor microenvironment signatures predictive of oral cavity cancer outcome
- Embigin is involved in the regulation of early mouse kidney development
- Complete Data Analysis Workflow for Quantitative DIA Mass Spectrometry Using Nextflow
- Bmp9 regulates Notch signaling and the temporal dynamics of angiogenesis via Lunatic Fringe
- High-sensitivity, protein-independent detection of dsDNA sequences