Programmable NIR Responsive Nanocomposite Enables Noninvasive Intratympanic Delivery of Dexamethasone to Reverse Cisplatin Induced Hearing Loss
Adv Sci (Weinh). 2024 Nov 21:e2407067. doi: 10.1002/advs.202407067. Online ahead of print.
Published on November 22, 2024
ABSTRACT
Local intratympanic drug delivery to the inner ear possesses significant otological clinical promise as cisplatin-induced hearing loss (CIHL) therapy, inducing significantly less side effects than systemic drug delivery. However, the multiple detoured barriers, round window membrane (RWM) and poorly controlled drug release hinder successful non-invasive drug delivery through intratympanic administration (IT). Here, a novel near-infrared (NIR) responsive nanocomposite functionalized with saponin, denoted gold nanorod@dexamethasone-mesoporous silica-saponin (AuNR@DEX-MS-saponin, NPs/DEX), is developed to enhance RWM permeation and to control the drug release spatiotemporally. First, the physiochemical properties and release profile of the synthesized nanocomposites are assessed, after which the biocompatibility of the nanocomposites and oto-protection against CIHL are shown in vitro and in vivo. The findings demonstrated that DEX is delivered to the inner ear with high efficiency through IT, due to the permeation enhancement effect of the nanocomposite. Moreover, the nanocomposite with low dose of DEX is highly effective in recovering CIHL, attenuating hair cell loss, and alleviating synaptic ribbon damage. These findings provide insight into NIR-responsive local delivery for inner ear illnesses.
PMID:39573930 | DOI:10.1002/advs.202407067
Latest Publications
- The inflammatory path toward type 1 diabetes begins during pregnancy
- Fast label-free live imaging with FlowVision reveals key principles of cancer cell arrest on endothelial monolayers
- Single-cell RNA-seq analysis of longitudinal CD4+ T cell samples reveals cell-type-specific changes during early stages of type 1 diabetes
- Recurrent cancer-associated ERBB4 mutations are transforming and confer resistance to targeted therapies
- PhotoFiTT: a quantitative framework for assessing phototoxicity in live-cell microscopy experiments