Surface Modification of Mesoporous Silica Nanoparticles as a Means to Introduce Inherent Cancer-Targeting Ability in a 3D Tumor Microenvironment
Small Sci. 2024 Jul 8;4(9):2400084. doi: 10.1002/smsc.202400084. eCollection 2024 Sep.
Published on April 11, 2025
ABSTRACT
Mesoporous silica nanoparticles (MSNs) have emerged as promising drug carriers that can facilitate targeted anticancer drug delivery, but efficiency studies relying on active targeting mechanisms remain elusive. This study implements in vitro 3D cocultures, so-called microtissues, to model a physiologically relevant tumor microenvironment (TME) to examine the impact of surface-modified MSNs without targeting ligands on the internalization, cargo delivery, and cargo release in tumor cells and cancer-associated fibroblasts. Among these, acetylated MSNs most effectively localized in tumor cells in a 3D setting containing collagen, while other MSNs did so to a lesser degree, most likely due to remaining trapped in the extracellular matrix of the TME. Confocal imaging of hydrophobic model drug-loaded MSNs demonstrated effective cargo release predominantly in tumor cells, both in 2D and 3D cocultures. MSN-mediated delivery of an anticancer drug in the microtissues exhibited a significant reduction in tumor organoid size and enhanced the tumor-specific cytotoxic effects of a γ-secretase inhibitor, compared to the highly hydrophobic drug in free form. This inherent targeting potential suggests reduced off-target effects and increased drug efficacy, showcasing the promise of surface modification of MSNs as a means of direct cell-specific targeting and delivery for precise and successful targeted drug delivery.
PMID:40212075 | PMC:PMC11935100 | DOI:10.1002/smsc.202400084
Latest Publications
- Characterization of Visceral Adipose Tissue Proteome Reveals Metabolic Changes and Inflammatory Signatures in Severe Obesity
- Prenatal exposure to perfluoroalkyl substances predicts multimodal brain structural and functional outcomes in children aged 5 years: a birth cohort study
- LimROTS: A Hybrid Method Integrating Empirical Bayes and Reproducibility-Optimized Statistics for Robust Differential Expression Analysis
- MicroRNA gene dynamics in immune cell subpopulations during aging and atherosclerosis disease development at single-cell resolution
- Functional characterization and directed evolution of Cicer arietinum glutathione transferases for enhanced hydroperoxidase activity and ligandin function