The PP2A regulator IER5L supports prostate cancer progression
Cell Death Dis. 2024 Jul 18;15(7):514. doi: 10.1038/s41419-024-06907-z.
Published on July 18, 2024
ABSTRACT
Prostate cancer exhibits high prevalence and accounts for a high number of cancer-related deaths. The discovery and characterization of molecular determinants of aggressive prostate cancer represents an active area of research. The Immediate Early Response (IER) family of genes, which regulate Protein Phosphatase 2A (PP2A) activity, has emerged among the factors that influence cancer biology. Here, we show that the less studied member of this family, Immediate Early Response 5 like (IER5L), is upregulated in aggressive prostate cancer. Interestingly, the upregulation of IER5L expression exhibits a robust association with metastatic disease in prostate and is recapitulated in other cancer types. In line with this observation, IER5L silencing reduces foci formation, migration and invasion ability in a variety of human and murine prostate cancer cell lines. In vivo, using zebrafish and immunocompromised mouse models, we demonstrate that IER5L-silencing reduces prostate cancer tumor growth, dissemination, and metastasis. Mechanistically, we characterize the transcriptomic and proteomic landscapes of IER5L-silenced cells. This approach allowed us to identify DNA replication and monomeric G protein regulators as downstream programs of IER5L through a pathway that is consistent with the regulation of PP2A. In sum, we report the alteration of IER5L in prostate cancer and beyond and provide biological and molecular evidence of its contribution to tumor aggressiveness.
PMID:39025841 | PMC:PMC11258296 | DOI:10.1038/s41419-024-06907-z
Latest Publications
- Characterization of Visceral Adipose Tissue Proteome Reveals Metabolic Changes and Inflammatory Signatures in Severe Obesity
- Prenatal exposure to perfluoroalkyl substances predicts multimodal brain structural and functional outcomes in children aged 5 years: a birth cohort study
- LimROTS: A Hybrid Method Integrating Empirical Bayes and Reproducibility-Optimized Statistics for Robust Differential Expression Analysis
- MicroRNA gene dynamics in immune cell subpopulations during aging and atherosclerosis disease development at single-cell resolution
- Functional characterization and directed evolution of Cicer arietinum glutathione transferases for enhanced hydroperoxidase activity and ligandin function